LÓGICA PARA COMPUTACIÓN

Año 2024

PRÁCTICO 4: CÁLCULO PROPOSICIONAL

SISTEMAS FORMALES

Sugerencia: Tenga en cuenta que como en algunos ejercicios se demuestran teoremas de \mathcal{L} , éstos se pueden usar como hipótesis en nuevas demostraciones.

Ejercicio 1:

Demostrar, en \mathcal{L} , que cada una de las siguientes fbfs son teoremas.

1.
$$((p_1 \to p_2) \to (((\neg p_1) \to (\neg p_2)) \to (p_2 \to p_1)))$$

2.
$$(((p_1 \to (p_2 \to p_3)) \to (p_1 \to p_2)) \to ((p_1 \to (p_2 \to p_3)) \to (p_1 \to p_3)))$$

Ejercicio 2:

Utilizar el Sistema Formal $\mathcal L$ para demostrar la validez del siguiente argumento:

Si tenemos una buena especificación entonces obtenemos un diseño correcto.

Si obtenemos un diseño correcto obtenemos un buen programa, a menos que nuestro programador sea mediocre.

Nuestro programador no es mediocre.

Por lo tanto, si tenemos una buena especificación obtenemos un buen programa.

Ejercicio 3:

Demostrar, en \mathcal{L} , que cada una de las siguientes fbfs son teoremas.

- 1. $(p_1 \to p_1)$
- 2. $((\neg p_1) \to (p_1 \to p_2))$
- 3. $((p_1 \to (p_1 \to p_2)) \to (p_1 \to p_2))$

Ejercicio 4:

Demostrar que para fbfs cualesquiera \mathcal{A} , \mathcal{B} y \mathcal{C} de \mathcal{L} es posible deducir lo que sigue:

- 1. $\{(A \to B), (B \to C)\} \vdash_{\mathcal{L}} (A \to C)$ (Silogismo Hipotético)
- 2. $\{(\neg A)\} \vdash_{\mathcal{L}} (A \to B)$
- 3. $\{(\neg(\neg A))\} \vdash_{\mathcal{L}} A$
- 4. $\{(\mathcal{A} \to (\mathcal{B} \to \mathcal{C})), \mathcal{B}\} \vdash_{\mathcal{C}} (\mathcal{A} \to \mathcal{C})$
- 5. $\vdash_{\mathcal{L}} (\mathcal{B} \to (\neg(\neg\mathcal{B})))$
- 6. $\{(\mathcal{A} \to \mathcal{B}), ((\neg(\mathcal{B} \to \mathcal{C})) \to (\neg\mathcal{A}))\} \vdash_{\mathcal{L}} (\mathcal{A} \to \mathcal{C})$
- 7. $\{(\mathcal{A} \to (\mathcal{B} \to \mathcal{C}))\} \vdash_{\mathcal{L}} (\mathcal{B} \to (\mathcal{A} \to \mathcal{C}))$

En donde sea conveniente, usar el Teorema de la Deducción o su recíproco.

Ejercicio 5:

Utilizando, cuando sea conveniente, el Teorema de Deducción o su recíproco demostrar que las siguientes fbfs son teoremas de \mathcal{L} , siendo \mathcal{A} , \mathcal{B} y \mathcal{C} fbfs cualesquiera de \mathcal{L} :

1.
$$((\mathcal{B} \to \mathcal{A}) \to ((\neg \mathcal{A}) \to (\neg \mathcal{B})))$$

2.
$$((A \to B) \to ((A \to (B \to C)) \to (A \to C)))$$

3.
$$((\neg(A \to B)) \to (B \to A))$$

4.
$$(\mathcal{A} \to ((\mathcal{A} \to \mathcal{B}) \to \mathcal{B}))$$

5.
$$(((\neg A) \to B) \to ((A \to C) \to ((B \to C) \to C)))$$

Ejercicio 6:

Dado otro sistema formal \mathcal{L}_1 , que cuenta con *Modus Ponens* y *Silogismo Hipotético* como sus reglas de inferencia y que utiliza los siguientes axiomas:

(Ax1)
$$(A \rightarrow (B \rightarrow A))$$

(Ax2)
$$((A \to (B \to C)) \to ((A \to B) \to (A \to C)))$$

(Ax3)
$$(((\neg B) \rightarrow (\neg A)) \rightarrow (((\neg B) \rightarrow A) \rightarrow B))$$

Se pide:

- 1. Analice cada una de las fórmulas del ejercicio previo, y determine si la demostración realizada, considerando como sistema formal a \mathcal{L} , podría también ser una demostración en el nuevo sistema formal \mathcal{L}_1 .
- 2. Demostrar en \mathcal{L}_1 que $\vdash_{\mathcal{L}_1} (((\neg \mathcal{B}) \to (\neg \mathcal{A})) \to (\mathcal{A} \to \mathcal{B}))$.
- 3. ¿Qué necesitaría demostrar para probar que \mathcal{L} y \mathcal{L}_1 son equivalentes?